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Homework 8.1 (On Picard’s little theorem). a. Employ Proposition 5.10 from the
lecture notes to prove Picard’s little theorem without using Picard’s great theorem.

b. Show Picard’s little theorem is equivalent to the following claim. If 𝑓 , 𝑔 : C → C
are entire functions such that 𝑒 𝑓 + 𝑒𝑔 = 1, then 𝑓 , 𝑔 are constant.

Solution. a. Let 𝑓 : C → C be nonconstant and holomorphic. Assume that there exist two
distinct elements 𝑤1, 𝑤2 ∈ C such that {𝑤1, 𝑤2} ∩ 𝑓 (C) = ∅. Then the entire assignment
𝑔(𝑧) := ( 𝑓 (𝑧) − 𝑤1) (𝑤2 − 𝑤1)−1 is again nonconstant and omits the values {0, 1}. By
Proposition 5.10, we find a holomorphic function ℎ : C → C such that

𝑔 =
1
2
[
1 + cos(𝜋(cos 𝜋ℎ))

]
and ℎ(C) contains no disc of radius larger than or equal to one. From the general version of
Bloch’s theorem, cf. Homework 7.1, we infer ℎ is constant, which shows 𝑔 and therefore 𝑓

is constant. This is a contradiction.
b. We have seen in the proof of item a. that Picard’s little theorem is equivalent to the

statement that every entire function that omits the two values {0, 1} is constant. Assume
that this statement is true. If e 𝑓 + e𝑔 = 1 for two entire functions 𝑓 , 𝑔 : C → C, then the
function 𝑒𝑔 omits the values 0 and 1, which forces constancy of 𝑒𝑔. Taking the derivative we
see that e𝑔𝑔′ = 0, so that 𝑔′ = 0. Thus 𝑔 is constant. Repeating the argument we conclude
that 𝑓 is constant.

Now assume that for all entire functions 𝑓 , 𝑔 : C → C the equality e 𝑓 + e𝑔 = 1 implies
𝑓 and 𝑔 are constant. Suppose that ℎ : C → C is entire and omits the values {0, 1}. Then
ℎ = e𝑔 for some entire function 𝑔 : C → C. Moreover, there exists an entire function
𝑓 : C → C such that 1 − ℎ = e 𝑓 . This entails e 𝑓 + e𝑔 and therefore 𝑓 and 𝑔 are constant.
This implies ℎ is constant.

Homework 8.2 (Landau’s sharpened version of Picard’s little theorem∗). a. Prove
there exists a function 𝑅 : C \ {0, 1} → (0,∞)1 such that

{ 𝑓 ∈ H(𝐵̄𝑅 (𝑎) (0)) : 𝑓 (0) = 𝑎, 𝑓 ′ (0) = 1, 𝑓 omits 0 and 1} = ∅.
b. Show that the statement in a. implies Picard’s little theorem.

Homework 8.3 (Approaching Picard’s great theorem). Prove Picard’s great theorem is
equivalent to the following claim. Let 𝑓 : 𝐵1 (0) \ {0} → C be any holomorphic function
such that {0, 1} ∩ 𝑓 (𝐵1 (0) \ {0}) = ∅. Then 𝑓 or 1/ 𝑓 is bounded in a neighborhood of 0.

Solution. Given Picard’s great theorem, any holomorphic function 𝑓 : 𝐵1 (0) \ {0} → C
that omits the values 0 and 1 cannot have an essential singularity in 0. If the singularity is
removable, then 𝑓 is bounded in a neighborhood of 0. If 𝑓 has a pole in 0, then 1/ 𝑓 has a
removable singularity in 0 and we conclude 1/ 𝑓 is bounded in a neighborhood of 0.

To prove the converse statement, we argue by contradiction. Assume there exists a
function 𝑓 : 𝑈 \ {𝑧0} → C that has an essential singularity in 𝑧0 and there exist two
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1Hint. Set 𝑅 (𝑎) := 3𝐿 (1/2, |𝑎 | ) , where 𝐿 is given by Schottky’s theorem.
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distinct values 𝑎, 𝑏 ∈ C and a neighborhood 𝐵𝑟 (𝑧0) of 𝑧0 such that on 𝐵𝑟 (𝑧0) \ {𝑧0}, the
function 𝑓 assumes the values 𝑎 and 𝑏 only finitely many times. Up to shrinking 𝑟 we can
assume that 𝑓 omits the values 𝑎 and 𝑏; moreover, up to considering the transformation
𝑧 ↦→ ( 𝑓 (𝑟𝑧 + 𝑧0) − 𝑎) (𝑏 − 𝑎)−1 we may and will assume 𝑟 = 1, 𝑧0 = 0, 𝑎 = 0, and 𝑏 = 1.
By assumption either 𝑓 or 1/ 𝑓 is bounded in a neighborhood of 0. If 𝑓 is bounded in a
neighborhood of 0, it has a removable singularity in 0, which yields a contradiction. If
𝑔 := 1/ 𝑓 is bounded, then 𝑔 has a removable singularity in 0. Let 𝑔 denote the nonrelabeled
holomorphic extension. If 𝑔(0) ≠ 0, then also 𝑓 is bounded near 0 and we conclude as
before. If 𝑔(0) = 0 then lim𝑧→0 | 𝑓 (𝑧) | = +∞ and we conclude 𝑓 has a pole in 0. Hence in
both cases, we obtain a contradiction.

Homework 8.4 (A stronger version of the sharpened Montel theorem). Let 𝐺 ⊂ C be a
simply connected domain and for 𝑚 ∈ N define

F𝑚 := { 𝑓 : 𝐺 → C : 𝑓 holomorphic, 𝑓 (𝐺) ∩ {0} = ∅, #{ 𝑓 = 1} ≤ 𝑚}.
Let { 𝑓𝑛}𝑛∈N be a sequence in F𝑚. Show that either along the entire sequence | 𝑓𝑛 | converges
locally uniformly to ∞ or there exists a subsequence of ( 𝑓𝑛)𝑛∈N that converges locally
uniformly to a holomorphic function 𝑓 : 𝐺 → C2.

Solution. Since 𝑓 (𝐺) ∩ {0} = ∅ for every 𝑓 ∈ F𝑚 and 𝐺 is simply connected, we can
define the holomorphic function 𝑚+1

√︁
𝑓 : 𝐺 → C. Note 𝑚+1

√︁
𝑓 ≠ 0 on 𝐺 and moreover there

exists 𝑠 𝑓 ∈ {0, . . . , 𝑚} such that for every 𝑧 ∈ 𝐺, we have
𝑚+1
√︁
𝑓 (𝑧) ≠ exp(2𝜋i𝑠 𝑓 (𝑚 + 1)−1).

Indeed, otherwise the equation 𝑓 (𝑧) = 1 has at least 𝑚 + 1 distinct solutions — this, however,
contradicts the inclusion 𝑓 ∈ F𝑚. Set 𝑧 𝑓 = exp(2𝜋i𝑠 𝑓 ) ∈ 𝜕𝐵1 (0) and consider the rescaled
function 𝑓 := 𝑚+1

√︁
𝑓 /𝑧 𝑓 . Given a sequence ( 𝑓𝑛)𝑛∈N in F𝑚 we can apply Theorem 5.12 to the

sequence ( 𝑓𝑛)𝑛∈N and deduce either | 𝑓𝑛 | → ∞ locally uniformly as 𝑛 → ∞ or that along a
nonrelabeled subsequence ( 𝑓𝑛)𝑛∈N converges locally uniformly to a holomorphic function
𝑓 : 𝐺 → C. Up to passing to a further subsequence we can also assume that in the second
case (𝑧 𝑓𝑛 )𝑛∈N converges to a point 𝑧∞ ∈ 𝜕𝐵1 (0). This yields the claim.

2Hint. Consider a suitable root 𝑘
√︁
𝑓 for 𝑓 ∈ F𝑚.


